

Product Information Bulletin

BULLETIN NO.	339
ISSUED:	May 19, 2017
REPLACES:	September 13, 2016

PlastiSpan® Insulation for High Compressive Load Applications

Page 1 of 2

PlastiSpan® insulation is a closed cell expanded polystyrene (EPS) insulation that meets the requirements of CAN/ULC-S701, **Standard for Thermal Insulation, Polystyrene, Boards and Pipe Covering**. The closed cell structure of **PlastiSpan** insulation resists water absorption so it will retain its thermal resistance even in applications where severe temperature differentials occur.

Table 1 - PlastiSpan Insulation Material Properties

Material Property	Test Method	Units	PlastiSpan Insulation Types				
			HD ¹	25 ²	30 ³	40 ⁴	60 ⁵
Compressive Resistance		kPa	110	170	210	276	414
Minimum @ 10% Strain		(psi)	(16)	(25)	(30)	(40)	(60)
Compressive Resistance ⁶ Minimum @ 1% Strain	ASTM	kPa	45	60	75	103	180
	D1621	(psi)	(6.5)	(8.7)	(10.9)	(15.0)	(26.1)
Compressive Modulus Minimum		kPa	4,500	6,000	7,517	10,345	18,000
		(psi)	(650)	(870)	(1,090)	(1,500)	(2,610)
Thermal Resistance Minimum per 25 mm (1 inch)	ASTM	m²•°C/W	0.70	0.74	0.74	0.75	0.75
	C518	(ft²•h•°F/Btu)	(4.04)	(4.27)	(4.27)	(4.3)	(4.3)
Flexural Strength Minimum	ASTM	kPa	240	300	345	414	517
	C203	(psi)	(35)	(44)	(50)	(60)	(75)
Water Vapour Permeance ⁷ Maximum	ASTM	ng/(Pa·s·m²)	200	130	130	90	90
	E96	(Perms)	(3.5)	(2.25)	(2.25)	(1.5)	(1.5)
Water Absorption ⁸ Maximum	ASTM D2842	% By volume	4.0	2.0	2.0	2.0	2.0
Dimensional Stability Maximum	ASTM D2126	% Linear Change	1.5				
Limiting Oxygen Index Minimum	ASTM D2863	%	24				

^{1.} PlastiSpan HD insulation meets or exceeds CAN/ULC-S701, type 2.

^{2.} PlastiSpan 25 insulation meets or exceeds CAN/ULC-S701, type 3.

^{3.} PlastiSpan 30 insulation meets or exceeds CAN/ULC-S701, type 3.

^{4.} PlastiSpan 40 insulation meets or exceeds CAN/ULC-S701, type 3.

^{5.} PlastiSpan 60 insulation meets or exceeds CAN/ULC-S701, type 3.

^{6.} Compressive resistance at 1% strain is within the elastic limit for PlastiSpan insulation and is accepted as the design compressive resistance to limit long-term deformation under structural load.

^{7.} WVP values quoted are maximum values for 25-mm thick samples with natural skins intact. Lower values will result for thicker materials.

^{8.} The water absorption values are applicable to specific end-use design requirements only to the extent that the end-use conditions requires submersion under a head of water for an extended period of time.

PlastiSpan Insulation for High Compressive Load Applications Product Information Bulletin 339

Page 2 of 2

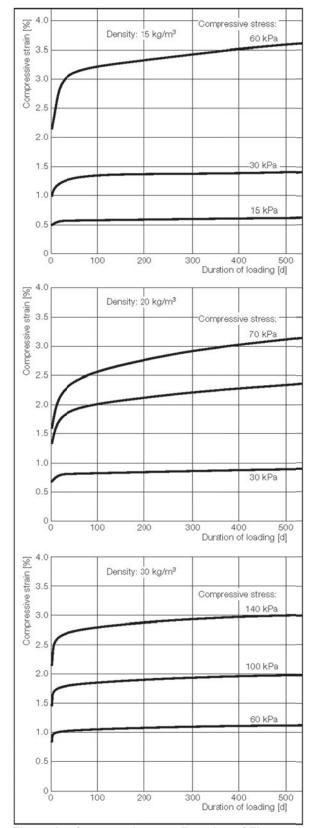


Figure 1 – Compression as a Function of Time Source: BASF - The Compressive Strength of EPS

PlastiSpan insulation is available with a range of compressive resistance values which makes it ideal to insulating floors, foundations or any application where heavy loads are expected. PlastiSpan insulation material property values for use in load bearing applications are provided below.

Compressive resistance is the most important mechanical property for PlastiSpan insulation used in applications where compressive loads will be applied in the end-use application. The compressive resistance depends primarily on the bulk density with compressive resistance increasing as the bulk density increases.

Figure 1 provides examples of compressive creep curves (change in thickness versus log time) for EPS specimens of three different densities when subjected to various constant loads over a long period. As can be seen, the greatest compressive strain occurs after initial application of load and as the load remains in place for a longer period of time, the strain per unit time decreases. The graphs indicate that if the initial compressive strain is less than 1%, it can be expected that the thickness of the PlastiSpan insulation will not change much more over long loading periods.

This is because compressive resistance at 1% strain is within the elastic limit for the higher strength PlastiSpan insulation types in table 1 and is accepted as the design compressive resistance to limit long-term deformation under structural load.

Compressive resistance at 10% strain is not used for design purposes when an insulation material will be under compressive load. It is typically used for quality control purposes.

Compressive resistance at strain beyond the elastic limit may be applicable for design purposes when the end-use application requires long-term deformation under structural load. One example of this type of application is compressible fill material applications where the EPS is acting as a compressible medium between an expansive soils and a structural element. For additional technical information on GeoVoid® and GeoSpan® compressible fill materials see Plasti-Fab Product Information Bulletin no. 277.